Carbon Dioxide Exchange Reactions Involving Early Transition-metal NN-Dimethylcarbamato Compounds: Reversible Insertion of Carbon Dioxide into Transition-metal–Nitrogen σ-Bonds

By MALCOLM H. CHISHOLM* and MICHAEL EXTINE

(Frick Inorganic Chemical Laboratories, Department of Chemistry, Princeton University, Princeton, New Jersey 08540)

Summary Transition-metal NN-dimethylcarbamato compounds ML*_n, (where M = Ti, Zr and n = 4; M = Nb, Ta and n = 5), W₂L*₆ and W(NMe₂)₃L*₃, (L* = O₂ ¹³CNMe₂), react with ¹²CO₂ to give ML_n, W₂L₆ and W-(NMe₂)₃L₃, where (L = O₂¹²CNMe₂), with an energy of activation ranging from ca. 54 ± 8kJ mol⁻¹ for ZrL₄ to ca. 96kJ mol⁻¹ for W(NMe₂)₃L₃; mixtures of ML_n and ML*_n scramble CO₂ in the absence of an applied CO₂ atmosphere.

EARLY transition-metal dimethylamides¹ $M(NMe_2)_n$ (where M = Ti, Zr, n = 4; M = Nb, Ta, n = 5 and M = W, n = 3 and 6) react^{2,3} with carbon dioxide to give NN-dimethyl-carbamato compounds ML_n except $W(NMe_2)_6$ which gives $W(NMe_2)_3L_3$, (where $L = O_2^{12}CNMe_2$). The compounds $W(NMe_2)_3L_3^2$ and NbL_5^4 have been shown to contain six co-ordinate tungsten, fac-WN₃O₃, and eight co-ordinate niobium respectively. We now find that in solution all these compounds are labile towards CO_2 exchange (equation 1).

$$\begin{array}{l} \mathrm{ML}^{*}{}_{n} + x^{12}\mathrm{CO}_{2} \rightleftharpoons \mathrm{ML}_{m} \mathrm{L}^{*}{}_{n-m} + m^{13}\mathrm{CO} \\ & + (x-m)^{12}\mathrm{CO}_{2} \end{array} (1) \\ (\text{where } \mathrm{L} = \mathrm{O}_{2}{}^{12}\mathrm{CNMe}_{2} \text{ and } \mathrm{L}^{*} = \mathrm{O}_{2}{}^{13}\mathrm{CNMe}_{2}) \end{array}$$

The reactions were carried out in dichloromethane for M = Zr and Ti, and in $[{}^{2}H_{8}]$ -toluene and benzene for M = Nb, Ta and W. The reactions were followed by ¹H n.m.r. spectroscopy using the fact that the ^{13}C labelled ligand $O_2^{13}CNMe_2$ shows ${}^3J^{13}C-H$ ca. 3 Hz (Figure). The reactions are remarkable in both their generality and lability. When ZrL*₄ was dissolved in dichloromethane and allowed to react with 8 mol. equiv. of ¹²CO₂ in a sealed n.m.r. tube at -43 °C, its half-life was ca. 20 min. From variable temperature ¹H n.m.r. studies we estimate the energy of activation of the reaction to be ca. 54 ± 8 kJ mol⁻¹ for M = Zr. The reaction occurs with equal ease for M = Ti, Nb and Ta. The rate of exchange for $W(NMe_2)_3L_3$ is, however, significantly slower ($E_{act} ca. 96 \text{ kJ} \text{ mol}^{-1}$) which makes it more amenable to detailed kinetic studies using the ¹H n.m.r. technique.

A plausible mechanism for the reaction involves an initial de-insertion (expulsion) of CO_2 from a carbamato ligand (equation 2). Consistent with this proposal are the

$$M(O_2CNMe_2)_n \rightleftharpoons M(O_2CNMe_2)_{n-1}(NMe_2) + CO_2$$
(2)

following observations:

 $(1)^4$ Solutions of NbL₅ in $[^2H_8]$ -toluene contain significant (n.m.r. detectable) concentrations of NbL₄(NMe₂). The concentration of the latter is dependent on CO₂ pressure.

(2) Preliminary kinetic studies involving $W(NMe_2)_3L_3$ indicate that the CO₂ exchange reaction is first-order in tungsten and *ca.* zero-order in CO₂ concentrations.

(3) When a mixture of ZrL_4^* and TiL_4 was dissolved in dichloromethane scrambling occurred (equation 3).

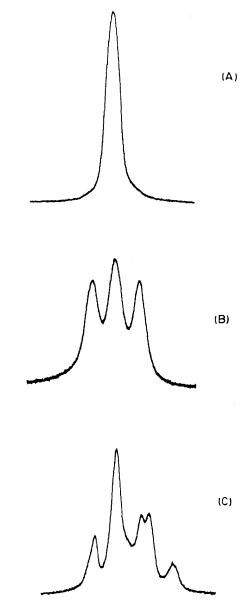


FIGURE. ¹H n.m.r. spectra (CH₂Cl₂, 100 MHz, 30°C), of the N-methyl resonances of (A) $Zr(O_2^{12}CNMeEt)_4 \ \delta = 2.90 \text{ p.p.m.}$ (rel. Me₄Si), (B) $Zr(O_2^{12}CNMeEt)_4 + 4^{13}CO_2$ after 5 min, ${}^{4}J^{13}C_{-H}$ 3.0 Hz, (C) $Zr(O_2^{13}CNMe_2)_4 + Zr(O_2^{12}CNMeEt)_4$ showing scrambling of CO₂ between the carbamato ligands; the O₂CNMe₂ resonance is to low field of the O₂CNMeEt resonance.

$$\operatorname{ZrL}_{4}^{*} + \operatorname{TiL}_{4} \rightleftharpoons \operatorname{ZrL}_{x} \operatorname{L}_{4-x}^{*} + \operatorname{TiL}_{x} \operatorname{L}_{4-x}^{*}$$
(3)

Similar scrambling occurred when a mixture of ZrL_{4}^{*} and NbL₅ was dissolved in dichloromethane.

(4) A mixture of ${\rm ZrL}{}^{\boldsymbol{*}_4}_4$ and ${\rm Zr}({\rm O_2}{}^{12}{\rm CNMeEt})_4$ in dichloromethane scrambled CO_2 to give $ZrL_xL_{4-x}^*$ and $Zr(O_2$ $^{12}\text{CNMeEt})_{4-x}(\text{O}_2{}^{13}\text{CNMeEt})_x$ (Figure).

(5) A mixture of ${\rm ZrL}_4{'}$ and ${\rm NbL}_5$ reacted in dichloromethane to give $\operatorname{ZrL}_{x} \operatorname{L}_{4-x}$ and $\operatorname{NbL}_{5-x} \operatorname{L}_{x}'$ where $\operatorname{L}' = {}^{18}\operatorname{O}_{2} {}^{12}\operatorname{CNMe}_{2}$ (indicated by i.r. spectroscopy⁴).

(6) The organic ester MeO₂¹²CNMe₂ does not react with either $^{13}CO_2$ or NbL*₅ under comparable conditions to those above.

Whilst all these observations are entirely consistent with an initial mechanism as in equation 2 we recognize that our present data do not exclude all alternate mechanisms for the reaction. However, we believe that the most plausible mechanism is given in equation 2 and it provides a

rationale for the observation that $W(NMe_2)_3L_3$ has the slowest rate of exchange. It should be noted that the displacement of CO₂ in the reaction between Me₃SnO₂CNMe₂ and CS₂, which gives⁵ Me₃SnS₂CNMe₂, could also proceed via the initial step shown in equation 2.

We thank the Research Corporation, the Petroleum Research Fund administered by the donors of the American Chemical Society and the National Science Foundation for support, and M.E. thanks the American Can Company for a graduate fellowship.

(Received, 17th March 1975; Com. 324.)

¹ D. C. Bradley, Adv. Inorg. Chem. Radiochem., 1972, 15, 259.

- ² M. H. Chisholm and M. Extine, J. Amer. Chem. Soc., 1974, 96, 6214.
 ³ G. Chandra, A. D. Jenkins, M. F. Lappert, and R. C. Srivastava, J. Chem. Soc. A, 1970, 2550.
 ⁴ M. H. Chisholm and M. Extine, J. Amer. Chem. Soc., 1975, 97, 1623.
 ⁵ T. A. George, K. Jones, and M. F. Lappert, J. Chem. Soc., 1965, 2157.